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The Symmetric Group Sn

The symmetric group Sn := {bijections on {1, . . . , n}} is generated
by the adjacent transpositions si = (i , i + 1), 1 ≤ i ≤ n − 1, with
quadratic relations s2i = 1, 1 ≤ i ≤ n − 1, and braid relations{

si si+1si = si+1si si+1, 1 ≤ i ≤ n − 2,

si sj = sjsi , |i − j | > 1.

More generally, a Coxeter group has a similar presentation.

The length of any w ∈ Sn is `(w) := min{k : w = si1 · · · sik}, which
coincides with inv(w) := {(i , j) : 1 ≤ i < j ≤ n,w(i) > w(j)}.
For example, w = 3241 ∈ S4 has `(w) = inv(w) = 4 and reduced
repressions w = s2s1s2s3 = s1s2s1s3 = s1s2s3s1.
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The Hecke Algebra Hn(q)

The (Iwahori-)Hecke algebra Hn(q) is a deformation of the group
algebra FSn of Sn over an arbitrary field F.

It is an F(q)-algebra generated by T1, . . . ,Tn−1 with relations
(Ti + 1)(Ti − q) = 0, 1 ≤ i ≤ n − 1,

TiTi+1Ti = Ti+1TiTi+1, 1 ≤ i ≤ n − 2,

TiTj = TjTi , |i − j | > 1.

It has an F(q)-basis {Tw : w ∈ Sn}, where Tw := Ts1 · · ·Tsk if
w = s1 · · · sk with k minimum.

It has significance in algebraic combinatorics, knot theory, quantum
groups, representation theory of p-adic groups, etc.
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The 0-Hecke algebra Hn(0)

Set q = 1: Hn(q)→ FSn, Ti → si , Tw → w .

Tits showed that Hn(q) ∼= CSn unless q ∈ {0, roots of unity}.
Set q = 0: Hn(q)→ Hn(0), Ti → πi , Tw → πw ,

π2i = −πi , 1 ≤ i ≤ n − 1,

πiπi+1πi = πi+1πiπi+1, 1 ≤ i ≤ n − 2,

πiπj = πjπi , |i − j | > 1.

Hn(0) has another generating set {πi := πi + 1}, with relations
π2i = πi , 1 ≤ i ≤ n − 1,

πiπi+1πi = πi+1πiπi+1, 1 ≤ i ≤ n − 2,

πiπj = πjπi , |i − j | > 1.

Sending πi to −πi gives an algebra automorphism.
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Significance of the 0-Hecke algebra

Using the automorphism πi 7→ −πi of Hn(0), Stembridge (2007) gave
a short derivation for the Möbius function of the Bruhat order of the
symmetric group Sn (or more generally, any Coxeter group).

Norton (1979) studied the representation theory of Hn(0) over an
arbitrary field F.

Norton’s result provides motivations to work of Denton, Hivert,
Schilling, and Thiéry (2011) on the representation theory of finite
J -trivial monoids.

Krob and Thibon (1997) discovered connections between
Hn(0)-representations and certain generalizations of symmetric
functions, which is similar to the classical Frobenius correspondence
between Sn-representations and symmetric functions.
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Analogies between Sn and Hn(0)

FSn is the group algebra of the symmetric group Sn and Hn(0) is the
monoid algebra of the monoid {πw : w ∈ Sn}.

The defining representations of Sn and Hn(0) are analogous:

1 oo
s1 // 2 oo

s2 // · · · oo
sn−1

// n

1
π1 // 2

π2 // · · ·
πn−1

// n

Sn acts on Zn: si swaps ai and ai+1 in a1 · · · an.

Hn(0) acts on Zn by the bubble-sorting operators: πi swaps ai and
ai+1 in a1 · · · an if ai > ai+1, or fixes a1 · · · an otherwise.

Analogies between other representations of Sn and Hn(0)?
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Actions on polynomials

Sn acts on F[X ] := F[x1, . . . , xn] by variable permutation.

Hn(0) also acts on F[X ] via the Demazure operators

πi (f ) := ∂i (xi f ) =
xi f − si (xi f )

xi − xi+1
.

The divided difference operator ∂i is useful in Schubert calculus, a
branch of algebraic geometry.

π1(x31x2x3x
4
4 ) = (x31x2 + x21x

2
2 + x1x

3
2 )x3x

4
4 .

π2(x31x2x3x
4
4 ) = x31x2x3x

4
4 .

π3(x31x2x3x
4
4 ) = x31x2(−x23x34 − x33x

2
4 ).
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The coinvariant algebra of Sn

The invariant ring F[X ]Sn := {f ∈ F[X ] : wf = f ,∀w ∈ Sn} consists
of all symmetric functions in x1, . . . , xn. It is a polynomial ring
F[X ]Sn = F[e1, . . . , en] in the elementary symmetric functions

ek :=
∑

1≤i1<···<ik≤n
xi1 · · · xik , k = 1, . . . , n.

n = 3: e1 = x1 + x2 + x3, e2 = x1x2 + x1x3 + x2x3, e3 = x1x2x3

If f ∈ F[X ]Sn and g ∈ F[X ], then si (fg) = fsi (g).

Thus F[X ]/(e1, . . . , en) becomes a graded Sn-module.

Theorem (Chevalley–Shephard–Tod 1955, indirect proof)

The coinvariant algebra F[X ]/(e1, . . . , en) is isomorphic to the regular
representation FSn of Sn, if F is a field of characteristic 0.
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The Hn(0)-invariants are also the symmetric functions: πi f = f if and
only if si f = f for all i .

If f ∈ F[X ]Sn and g ∈ F[X ], then πi (fg) = f πi (g).

Thus F[X ]/(e1, . . . , en) becomes a graded Hn(0)-module.

Theorem (H. 2014)

The coinvariant algebra F[X ]/(e1, . . . , en) is isomorphic to the regular
representation of Hn(0).

Remark

Our proof is constructive, using the descent basis of the coinvariant
algebra given by Garsia and Stanton (1984).
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Representation theory of Sn

Every Sn-module is a direct sum of simple modules.

A partition of n is a decreasing sequence λ = (λ1, . . . , λk) of positive
integers whose sum is n; this is denoted by λ ` n.

The simple Sn-modules Sλ are indexed by partitions λ ` n.

Example: the defining representation Sn is isomorphic to Sn ⊕ Sn−1,1.

1 oo
s1 // 2 oo

s2 // · · · oo
sn−1

// n

The Schur function sλ is the sum of xτ for all semistandard tableaux
τ of shape λ. Example: s21 = x 1 1

2

+ x 1 2
2

+ · · · = x21x2 + x1x
2
2 + · · · .

Symmetric functions form a Hopf algebra with a self-dual basis {sλ}.
The Frobenius characteristic Sλ 7→ sλ is a Hopf algebra isomorphism.
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Representation theory of Hn(0)

A composition of n, denoted by α |= n, is a sequence
α = (α1, . . . , α`) of positive integers whose sum is n.

Norton (1979) showed that Hn(0) =
⊕

α|=n Pα, so every projective
indecomposable Hn(0)-module is isomorphic to Pα for some α |= n.

Furthermore, every simple Hn(0)-module is isomorphic to some
Cα := top(Pα) = Pα/radPα, which is 1-dimensional.

Generalizing Sym are two Hopf algebras QSym (quasisymmetric
functions) and NSym (noncommutative symmetric functions) with
dual bases {Fα} and {sα}. We have NSym � Sym ↪→ QSym.

Krob and Thibon (1997): by Pα 7→ sα and Cα 7→ Fα one has

{Hn(0)-modules} ↔ QSym (up to composition factors),
{projective Hn(0)-modules} ↔ NSym.
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A generalization of the coinvariant algebra

Let n ≥ k ≥ 1 be two integers. Define a homogeneous ideal

In,k := 〈xk1 , xk2 , . . . , xkn , en, en−1, . . . , en−k+1〉.

The span of xk1 , x
k
2 , . . . , x

k
n is isomorphic to the defining

representation of Sn.

1 oo
s1 // 2 oo

s2 // · · · oo
sn−1

// n

xk1
oo

s1 // xk2
oo

s2 // · · · oo
sn−1

// xkn

The quotient Rn,k := C[X ]/In,k is a graded Sn-module.

The coinvariant algebra C[X ]/(e1, . . . , en) is Rn,n.
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The Sn-module structure of Rn,k

Let OPn,k be the set of all k-block partitions of the set [n]. For
example, (35|126|4) ∈ OP6,3.

We have |OPn,k | = k! · Stir(n, k), where Stir(n, k) is the (signless)
Stirling number of the second kind.

Let SYT(n) be the set of standard Young tableaux of size n.

Theorem (Haglund–Rhoades–Shimozono 2018)

As an ungraded Sn-module, Rn,k is isomorphic to C[OPn,k ]. Moreover,
the graded Frobenius characteristic of Rn,k is

∑
τ∈SYT(n)

qmaj(τ)

(
d − des(τ)− 1

n − k

)
q

sshape(τ).
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A 0-Hecke analogue

Define Jn,k to be the ideal of F[X ] generated by elementary
symmetric functions en, en−1, . . . , en−k+1 and complete homogeneous
symmetric functions hk(x1), hk(x1, x2), . . . , hk(x1, x2, . . . , xn).

The span of hk(x1), hk(x1, x2), . . . , hk(x1, x2, . . . , xn) is isomorphic to
the defining representation of Hn(0).

1
π1 // 2

π2 // · · ·
πn−1

// n

hk(x1)
π1 // hk(x1, x2)

π2 // · · ·
πn−1

// hk(x1, . . . , xn)

The quotient Sn,k := F[X ]/Jn,k is a graded Hn(0)-module.

Theorem (H.–Rhoades 2018)

As an ungraded Hn(0)-module, Sn,k is isomorphic to F[OPn,k ].
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A decomposition of F[OP4,2]

1|234 π2=π3=0
gg

π1

��
2|134 π1=−1

π3=0gg

π2

��
3|124 π1=0

π2=−1gg

π3

��
4|123 π1=π2=0

π3=−1gg

12|34 π1=π3=0
gg

π2

��
13|24

π2=−1

rr

π1
||

π3
""

23|14π1=−1
π2=0 77

π3

""

14|23 π2=0
π3=−1gg

π1

||
24|13

π1=π3=−1

cc

π2

��
34|12 π1=π3=0

π2=−1gg

123|4 π1=π2=0
gg

π3

��
124|3 π1=0

π3=−1gg

π2

��
134|2 π2=−1

π3=0gg

π1

��
234|1 π1=−1

π2=π3=0gg

OP13 ∼= P4 ⊕ P13 OP22 ∼= P4 ⊕ P22 OP31 ∼= P4 ⊕ P31
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A decomposition of S4,2

x1 π2=π3=0
ee

π1

��
x2

π1=−1
π3=0ee

π2

��
x3

π1=0
π2=−1ee

π3

��
x4

π1=π2=0
π3=−1ee

P4 ⊕ P13

x1x2 π1=π3=0
ff

π2

��
x1x3

π2=−1

qq

π1
||

π3
""

x2x3
π1=−1
π2=0 88

π3

""

x1x4
π2=0

π3=−1ff
π1

||
x2x4

π1=π3=−1

cc

π2

��
x3x4

π1=π3=0
π2=−1ff

1

π1=π2=π3=0

CC

P4

x1x2x4

π1=0
π3=−1

cc

π2

��
x1x3x4

π2=−1
π3=0

cc

π1

��
x2x3x4

π1=−1
π2=π3=0

cc

P4 ⊕ P22 P31
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Graded characteristics of Sn,k

Theorem (H.–Rhoades 2018)

The graded Hn(0)-module Sn,k corresponds

∑
α|=n

tmaj(α)

[
n − `(α)

k − `(α)

]
t

sα inside NSym

and its graded quasisymmetric characteristic coincides with the graded
Frobenius characteristics of the Sn-module Rn,k .

Remark

This result connects to the Delta Conjecture of Haglund, Remmel, and
Wilson (2016) in the theory of Macdonald polynomials.
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More quotients of the polynomial ring

Theorem (DeConcini, Garsia, Procesi, Hotta, Springer, Tanisaki)

For any µ ` n, C[X ] has a homogeneous Sn-stable ideal Jµ generated
by certain elementary symmetric functions in partial variable sets.

Rµ = C[X ]/Jµ is isomorphic to the cohomology ring of the Springer
fiber indexed by µ.

The graded Frobenius characteristic of Rµ = C[X ]/Jµ is the modified
Hall-Littlewood symmetric function

H̃µ(x ; t) =
∑
λ

tn(µ)Kλµ(t−1)sλ

where n(µ) = µ2 + 2µ3 + 3µ4 + · · · and Kλµ(t) is the Kostka-Foulkes
polynomial.
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Hn(0)-action on Rµ = C[X ]/Jµ

Theorem (H. 2014)

The ideal Jµ is Hn(0)-stable if and only if µ = (1k , n − k) is a hook.
Assume µ is a hook below.

Then Rµ = C[X ]/Jµ becomes a projective Hn(0)-module.

Its graded noncommutative characteristic is

cht(C[X ]/Jµ) =
∑

α refined by µ

tmaj(α)sα = H̃µ(x ; t).

Its graded quasisymmetric characteristic is

Cht(C[X ]/Jµ) =
∑

α refined by µ

tmaj(α)sα = H̃µ(x ; t).
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Stanley-Reisner ring of the Boolean algebra

We introduced Hn(0)-actions on certain quotients of the
Stanley-Reisner ring of the Boolean algebra [H. 2015].

This gives multigraded Hn(0)-modules which correspond to

noncommutative analogues of H̃µ(x ; t) introduced by
Bergeron–Zabrocki (2005) and Lascoux–Novelli–Thibon (2013),
quasisymmetric generating function of the joint distribution of five
permutation statistics studied by Garsia and Gessel (1979).

We studied the Stanley-Reisner ring of the Coxeter complex of any
finite Coxeter group. (How about the Tits building of a finite general
linear group?)

We are currently investigate a two-parameter family of quotients of
the Stanley-Reisner ring (with Daniël Kroes).
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Thank you!
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